@ 7 Beyond Programmable Shading Course

ACM SIGGRAPH 2010

Deferred Rendering for Current and
Future Rendering Pipelines

Andrew Lauritzen
Advanced Rendering Technology (ART)
Intel Corporation

Overview

Forward shading
Deferred shading and lighting
Tile-based deferred shading

Deferred multi-sample anti-aliasing (MSAA)

Beyond Programmable Shading, SIGGRAPH 2010

This talk is structured as a seatironological walk through the development of some
commonrendering pipelines, with particular emphasis placed on the problems that
motivated the development of different algorithms.

Forward Shading

* Do everything we need to shade a pixel

— for each light
» Shadow attenuation (sampling shadow maps)
 Distance attenuation
» Evaluate lighting and accumulate

* Multi-pass requires resubmitting scene geometry
— Not a scalable solution

Beyond Programmable Shading, SIGGRAPH 2010

Simple forward shading cde summarized as doing everything that is required to
shade a pixel and outputting the result.

Typically this requires looping over a bunch of lights, evalu#tieig contributions
and accumulating the results.

The lights can be handled separately in a rapeiss setup but it scales poorly as each
lighting pass requires resubmitting the scene geometry.

Forward Shading Problems

* |neffective light culling

— Object space at best

— Trade-off with shader permutations/batching
« Memory footprint of all inputs

— Everything must be resident at the same time (!)
« Shading small triangles is inefficient

— Covered earlier in this course: [Fatahalian 2010]

Beyond Programmable Shading, SIGGRAPH 2010

While simple, forwardghading has a number of disadvantages.
¢CKS FTANRG A& OGKFG A0Qa KIFENR G2 Odzt fA3IK

Culling in object space before submitting geometry is the best you can do in practice
and that is often suboptimal.

Since lighting and shading are coupled in a single pinaer variations in these
cause a&ombinatoralexplosion oshaderpermutations which in turn affects the
ability to efficiently batch work together.

Thelight culling problems are particularly unfortunate as we idealyihundreds or
thousands of dynamic lights for global illumination approximations like instant
radiosity(VPLS).

AnotherLINR 6 f SY Aa GKIFG aAyoOoS ¢S KIFI@S | aiay3at
data has to be resident in memory and available to that program at the same time.

That means all shadow maps for all lights, all reflection maps and so on need to be
allocated storage in memory which is simply infeasible as rendering becomes more
complex.

Finally forward shading couples the schedulinglederexecution to therasterizer
output, which wastes resources at triangle boundaries.

Small or skinny triangles in particular are fairly inefficient to shade on current
architectures.

Kayvondiscussed this problem in detail earlier in this course.
| highly recommend checking out the slides on the course web page if you missed it.

Conventional Deferred Shading

 Store lighting inputs in memory (G-buffer)

— for each light
» Use rasterizer to scatter light volume and cull
» Read lighting inputs from G-buffer
« Compute lighting
» Accumulate lighting with additive blending

* Reorders computation to extract coherence

Beyond Programmable Shading, SIGGRAPH 2010

Conventional deferred shading avoids a number of these problems by restructuring
the rendering pipeline.

In particular, it decouples lighting from surface shadinghsa lights can be evaluated
independently and their contributions built up in image space.

To accomplish this, an initial geometry pass st@@saceinformation such as
position, normalalebdoA y FF G &3 S-Bufe®)i NBE 0 dzFFSNE 6D

Then for each light theasterizers used to scatter and cull light volumes which
executes the lighshaderonly where it has a nogero contribution.

The lightshaderreads the Gouffer, evaluates the contribution of the current light
and accumulates it using additive blending.

Thisreordering effectively captures the coherence ctamulatinghe contribution
from lights and schedules it efficiently.

Modern Implementation

Cull with screen-aligned quads

— Cover light extents with axis-aligned bounding box
» Full light meshes (spheres, cones) are generally overkill
» Can use oriented bounding box for narrow spot lights

— Use conservative single-direction depth test
— Two-pass stencil is more expensive than it is worth
— Depth bounds test on some hardware, but not batch-friendly

Beyond Programmable Shading, SIGGRAPH 2010

Modernimplementations of deferred shading typically forgo full light meshes in
favourofscreed f A Ay SR ljdzr Ra GKFIG o02dzyR GKS fA3IK

Similarly it is usually faster overall to use a sirdifection depth test rather than full
stencil updates and clears for each light.

Depth bounds tests can be used on some hardware but they are not particularly
friendly to drawing multiple lights in a single batch since the bounds must be set for
each light from the CPU.

Lit Scene (256 Point Lights) @

AN A
o ST——

¥

=il

Beyond Programmable Shading, SIGGRAPH 2010

This image shows a scelitewith deferred shading using 256 coloured points lights of
small to moderate size.

Quad-Based Light Culling

Beyond Programmable Shading, SIGGRAPH 2010

This visualization demonstrates the effect of light culling.
Here the whiter a pixel the more lights are being evaluatexte.

You can see the screaigned quads used to bound the extents of the point lights in
screen space.

You can also see that the singlgectional depth culling is removing lights that are
entirely occluded, but missing ones that are entirely in front of visible geometry (i.e.
GFE2FGAy3 Ay (GKS FANEOO®

Deferred Shading Problems

« Bandwidth overhead when lights overlap

» Read lighting inputs from G-buffer < overhead

« Accumulate lighting with additive blending < overhead

* Not doing enough work to amortize overhead

Beyond Programmable Shading, SIGGRAPH 2010

Despite its advantagegeferred shading is not without its own problems, the largest
of which is high bandwidth usage when lights overlap.

Recall the light loop from earlier.

Reconstructing the ®uffer and accumulating lighting with additive blending both
represent overhead compared to the actual lighting computation.

Unfortunately when many lights overlap we end up duplicating this overhead and it
starts to dominate the actual work being done.

Improving Deferred Shading @

* Reduce G-buffer overhead
— Access fewer things inside the light loop
— Deferred lighting / light pre-pass
 Amortize overhead

— Group overlapping lights and process them together
— Tile-based deferred shading

Beyond Programmable Shading, SIGGRAPH 2010

There are several approachesimproving the bandwidth usage of deferred shading.

The first is to simply reduce the overhead by minimizing the data that we read and
write inside the light loop.

This is precisely the reasoning behind deferred lighting and lighpass rendering
which I will discuss in a moment.

Another approach is to try and amortize the overhead better by grouping up multiple
lights and processing them together.

Tile-based deferred shading uses this approach to great effect as | will demonstrate
later.

10

Deferred Lighting / Light Pre-Pass

* Goal: reduce G-buffer overhead

« Split diffuse and specular terms
— Common concession is monochromatic specular

* Factor out constant terms from summation
— Albedo, specular amount, etc.

« Sum inner terms over all lights

Beyond Programmable Shading, SIGGRAPH 2010

As | mentioned, the goal of deferred lighting and light-pesss rendering is to reduce
the Gbuffer overhead.

To this end, we split the diffuse and specular terms and factor out any constants from
the resulting summations to avoid reading them for every light.

This includes things like the surfaabeda
In the lighting phase weum up the inner diffuse and specular terms.

Acommon concession to avoid amplifying our accumulation load to 6 elements is to
use monochromatic specular.

This is not technically correct but it is often good enough in practice and reduces the
light output to a convenient 4 elements.

11

In a final resolve step we reconstrube factored terms and combine them with our
summed diffuse and specular values.

The remaining terms can be reconstructed by rendering the scene again but moving
FT2NBINR A0Qa LINROI of e 0O Shafieraddzeadithieth fidn U0 KSY
there in a screefrspace resolve phase.

This will be cheaper than transformiagd rasterizing the scene again which involves
significant CPU and GPU overhead.

As an added bonus recé#tlat imagespace passes have better scheduling efficiency
for shading than pixel shaders driven by triangle rasterization.

Thus deferred lighting is an incremental improvement for some hardweowever it

AdyQu ¢AUK2dz0 Aua R2gyaARSao®

In particular, we sacrifice some flexibility by having to-faretor lighting equations

into diffuse and specular parts.

2 KAES AG YIeé aSSy tA1S GKSNBQa || FtSEAOA
and specular differently in the resolve pass, this flexibility is not particularly useful in
practice because interesting lighting variations occur mostly in the diffuse and

specular terms themselves.

LQY 06SAy3 Ay iHenterésBof doviering modeNdat&rial, sarfyfiore
details on this I highly recommend checking blattyl 2 T ¥ Yl Yy | YR ! RNA LI Y
excellent blog posts that | have linked at the end of this presentation.

12

