
1

This talk is structured as a semi-chronological walk through the development of some
commonrendering pipelines, with particular emphasis placed on the problems that
motivated the development of different algorithms.

2

Simple forward shading canbe summarized as doing everything that is required to
shade a pixel and outputting the result.

Typically this requires looping over a bunch of lights, evaluatingtheir contributions
and accumulating the results.

The lights can be handled separately in a multi-pass setup but it scales poorly as each
lighting pass requires resubmitting the scene geometry.

3

While simple, forwardshading has a number of disadvantages.

¢ƘŜ ŦƛǊǎǘ ƛǎ ǘƘŀǘ ƛǘΩǎ ƘŀǊŘ ǘƻ Ŏǳƭƭ ƭƛƎƘǘǎ ŜŦŦƛŎƛŜƴǘƭȅΦ

Culling in object space before submitting geometry is the best you can do in practice
and that is often suboptimal.

Since lighting and shading are coupled in a single pixel shader, variations in these
cause a combinatoralexplosion of shaderpermutations which in turn affects the
ability to efficiently batch work together.

Thelight culling problems are particularly unfortunate as we ideally want hundreds or
thousands of dynamic lights for global illumination approximations like instant
radiosity(VPLs).

AnotherǇǊƻōƭŜƳ ƛǎ ǘƘŀǘ ǎƛƴŎŜ ǿŜ ƘŀǾŜ ŀ ǎƛƴƎƭŜ ǇǊƻƎǊŀƳ ǘƻ άŘƻ ŜǾŜǊȅǘƘƛƴƎέΣ ŀƭƭ ƛƴǇǳǘ
data has to be resident in memory and available to that program at the same time.

That means all shadow maps for all lights, all reflection maps and so on need to be
allocated storage in memory which is simply infeasible as rendering becomes more
complex.

Finally forward shading couples the scheduling of shaderexecution to the rasterizer
output, which wastes resources at triangle boundaries.

Small or skinny triangles in particular are fairly inefficient to shade on current
architectures.

Kayvondiscussed this problem in detail earlier in this course.

I highly recommend checking out the slides on the course web page if you missed it.

4

Conventional deferred shading avoids a number of these problems by restructuring
the rendering pipeline.

In particular, it decouples lighting from surface shading sothat lights can be evaluated
independently and their contributions built up in image space.

To accomplish this, an initial geometry pass storessurfaceinformation such as
position, normal, alebdoƛƴ ŀ Ŧŀǘ άƎŜƻƳŜǘǊȅ ōǳŦŦŜǊέ όD-buffer).

Then for each light the rasterizeris used to scatter and cull light volumes which
executes the light shaderonly where it has a non-zero contribution.

The light shaderreads the G-buffer, evaluates the contribution of the current light
and accumulates it using additive blending.

Thisreordering effectively captures the coherence in accumulatingthe contribution
from lights and schedules it efficiently.

5

Modernimplementations of deferred shading typically forgo full light meshes in
favour of screen-ŀƭƛƎƴŜŘ ǉǳŀŘǎ ǘƘŀǘ ōƻǳƴŘ ǘƘŜ ƭƛƎƘǘΩǎ ƳŀȄƛƳǳƳ ŜȄǘŜƴǘǎΦ

Similarly it is usually faster overall to use a single-direction depth test rather than full
stencil updates and clears for each light.

Depth bounds tests can be used on some hardware but they are not particularly
friendly to drawing multiple lights in a single batch since the bounds must be set for
each light from the CPU.

6

This image shows a scenelit with deferred shading using 256 coloured points lights of
small to moderate size.

7

This visualization demonstrates the effect of light culling.

Here the whiter a pixel the more lights are being evaluatedthere.

You can see the screen-aligned quads used to bound the extents of the point lights in
screen space.

You can also see that the single-directional depth culling is removing lights that are
entirely occluded, but missing ones that are entirely in front of visible geometry (i.e.
άŦƭƻŀǘƛƴƎ ƛƴ ǘƘŜ ŀƛǊέύΦ

8

Despite its advantagesdeferred shading is not without its own problems, the largest
of which is high bandwidth usage when lights overlap.

Recall the light loop from earlier.

Reconstructing the G-buffer and accumulating lighting with additive blending both
represent overhead compared to the actual lighting computation.

Unfortunately when many lights overlap we end up duplicating this overhead and it
starts to dominate the actual work being done.

9

There are several approachesto improving the bandwidth usage of deferred shading.

The first is to simply reduce the overhead by minimizing the data that we read and
write inside the light loop.

This is precisely the reasoning behind deferred lighting and light pre-pass rendering
which I will discuss in a moment.

Another approach is to try and amortize the overhead better by grouping up multiple
lights and processing them together.

Tile-based deferred shading uses this approach to great effect as I will demonstrate
later.

10

As I mentioned, the goal of deferred lighting and light pre-pass rendering is to reduce
the G-buffer overhead.

To this end, we split the diffuse and specular terms and factor out any constants from
the resulting summations to avoid reading them for every light.

This includes things like the surface albedo.

In the lighting phase wesum up the inner diffuse and specular terms.

Acommon concession to avoid amplifying our accumulation load to 6 elements is to
use monochromatic specular.

This is not technically correct but it is often good enough in practice and reduces the
light output to a convenient 4 elements.

11

In a final resolve step we reconstructthe factored terms and combine them with our
summed diffuse and specular values.

The remaining terms can be reconstructed by rendering the scene again but moving
ŦƻǊǿŀǊŘ ƛǘΩǎ ǇǊƻōŀōƭȅ ōŜǎǘ ǘƻ ǎǘƻǊŜ ǘƘŜƳ ǳǇ ŦǊƻƴǘ ƛƴ ǘƘŜ D-buffer and read them from
there in a screen-space resolve phase.

This will be cheaper than transformingand rasterizing the scene again which involves
significant CPU and GPU overhead.

As an added bonus recallthat image-space passes have better scheduling efficiency
for shading than pixel shaders driven by triangle rasterization.

Thus deferred lighting is an incremental improvement for some hardware, however it
ƛǎƴΩǘ ǿƛǘƘƻǳǘ ƛǘǎ ŘƻǿƴǎƛŘŜǎΦ

In particular, we sacrifice some flexibility by having to pre-factor lighting equations
into diffuse and specular parts.

²ƘƛƭŜ ƛǘ Ƴŀȅ ǎŜŜƳ ƭƛƪŜ ǘƘŜǊŜΩǎ ŀ ŦƭŜȄƛōƛƭƛǘȅ ŀŘǾŀƴǘŀƎŜ ōȅ ōŜƛƴƎ ŀōƭŜ ǘƻ ŎƻƳōƛƴŜ ŘƛŦŦǳǎŜ
and specular differently in the resolve pass, this flexibility is not particularly useful in
practice because interesting lighting variations occur mostly in the diffuse and
specular terms themselves.

LΩƳ ōŜƛƴƎ ƛƴǘŜƴǘƛƻƴŀƭƭȅ ōǊƛŜŦ ƛƴthe interest of covering more material, so for more
details on this I highly recommend checking out NatyIƻŦŦƳŀƴ ŀƴŘ !ŘǊƛŀƴ {ǘƻƴŜΩǎ
excellent blog posts that I have linked at the end of this presentation.

12

