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* Overview of parallel programming models used
In real-time graphics products and research
— Abstraction, execution, synchronization

— Shaders, task systems, conventional threads,
graphics pipeline, “GPU” compute languages

What’s In This Talk?

 Discussion of strengths/weaknesses between
the models
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Data Parallelism




Task Parallelism




Graphics Pipelines

Input Assembly
Vertex Shading

Primitive Setup
Pipeline
Flow

Geometry Shading

Rasterization

Pixel Shading

Output Merging
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Hardware Resources (from Kayvon’s Talk) é/j

Core
Execution Context
SIMD functional units

On-chip memory
o ofonlen

Shared Ctx Data
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« Abstraction enables portability and system optimization
— E.g., dynamic load balancing, producer-consumer, SIMD utilization

Abstraction

« Lack of abstraction enables arch-specific user optimization
— E.g., multiple execution contexts jointly building on-chip data structure

 When a parallel programming model abstracts a HW
resource, code written in that programming model scales
across architectures with varying amounts of that resource
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Execution @

e Task

— Alogically related set of instructions executed in a single execution context
(aka shader, instance of a kernel, task)

« Concurrent execution

— Multiple tasks that may execute simultaneously
(because they are logically independent)

 Parallel execution

— Multiple tasks whose execution contexts are guaranteed to be live

simultaneously _ .
(because you want them to be for locality, synchronization, etc)
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Synchronization @

« Synchronization
— Restricting when tasks are permitted to execute

« Granularity of permitted synchronization
determines at which granularity system allows
user to control scheduling
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Pixel Shaders

« EXxecution
— Concurrent execution of identical per-pixel tasks
— Parallelism between four pixels in a 2x2 quad

« What is abstracted?

— Cores, execution contexts, SIMD functional units, memory
hierarchy

« What synchronization is allowed?
— Between draw calls



“Task Systems” (Cilk, TBB, ConcRT, GCD, ...) &,

» EXxecution
— Concurrent execution of many (likely different) tasks

« What Is abstracted?

— Cores and execution contexts

— Does not abstract: SIMD functional units or memory
hierarchy

* Where Is synchronization allowed?
— Between tasks
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Conventional Thread Parallelism (pthreads)@

 Execution
— Parallel execution of N tasks with N execution contexts

* What is abstracted?
— Nothing (ignoring preemption)

* Where Is synchronization allowed?
— Between any execution context at various granularities
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DirectX/OpenGL Rendering Pipeline @

e EXxecution
— Data-parallel concurrent execution of identical task within each
shading stage
— Task-parallel concurrent execution of different shading stages
— No parallelism exposed to user

« What is abstracted?

— Cores, execution contexts, SIMD functional units, memory hierarchy,
and fixed-function graphics units (tessellator, rasterizer, ROPs, etc)

* Where is synchronization allowed?

— Between draw calls
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GPU Compute Languages

« DX11 DirectCompute
* OpenCL
« CUDA

* There are multiple possible usage models. We'll
start with the “text book” hierarchical data-
parallel usage model
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Terminology Decoder Ring

Direct
Compute

threadgroup

CUDA

thread

warp

threadblock

streaming

multiprocessor

grid

OpenCL

work-item

Work-group

compute unit

N-D range

Pthreads+SSE

SIMD lane

thread

This talk

work-item

execution
context

work-group

core

Set of work-




GPU Compute Languages @
« Execution
— Hierarchical model

— Lower level is parallel execution of identical tasks (work-items) within work-group
— Upper level is concurrent execution of identical work-groups

 What is abstracted?
— Work-group abstracts a core’s execution contexts, SIMD functional units
— Set of work-groups abstracts cores
— Does not abstract core-local memory

* Where is synchronization allowed?

— Between work-items in a work-group
— Between “passes” (set of work-groups)
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GPU Compute Models




User Responsibilities: GPU Compute @

« User manually maps work-item index to problem
domain

« User controls size and number of work-groups

— Selecting these parameters is complex combination
of architecture- and task-specific considerations
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When Use GPU Compute vs Pixel Shader? @

« Use GPU compute language if your algorithm
needs on-chip memory

— Reduce bandwidth by building local data structures

* Otherwise, use pixel shader

— All mapping, decomposition, and scheduling
decisions automatic

— (Easler to reach peak performance)
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Conventional Thread Parallelism on GPUs @

 Also called “persistent threads”

* "Expert” usage model for GPU compute

— Defeat abstractions over cores, execution contexts,
and SIMD functional units

— Defeat system scheduler, load balancing, etc.
— Code not portable between architectures
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Conventional Thread Parallelism on GPUs @

« Execution
— Two-level parallel execution model
— Lower level: parallel execution of M identical tasks on M-wide SIMD functional unit
— Higher level: parallel execution of N different tasks on N execution contexts

 What is abstracted?
— Nothing (other than automatic mapping to SIMD lanes)

* Where is synchronization allowed?
— Lower-level: between any task running on same SIMD functional unit
— Higher-level: between any execution context
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* Enable alternate programming models that require
different scheduling and synchronization rules than
the default model provides

Why Persistent Threads?

« Example alternate programming models
— Task systems (esp. nested task parallelism)
— Producer-consumer rendering pipelines
— (See references at end of this slide deck for more details)
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Summary of Concepts @

* Abstraction

— When a parallel programming model abstracts a HW resource,
code written in that programming model scales across
architectures with varying amounts of that resource

« Execution
— Concurrency versus parallelism

* Synchronization
— Where is user allowed to control scheduling?
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Conclusions 9,
« Current real-time rendering programming uses a mix of

data-, task-, and pipeline-parallel programming (and
conventional threads as means to an end)

« Current GPU compute models designed for data-
parallelism but can be abused to implement all of these
other models

* Look for uses of these different models throughout the
rest of the course
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Questions?

Course web page and slides:
http://bpsl0.idav.ucdavis.edu
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