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What’s In This Talk?

• Overview of parallel programming models used 
in real-time graphics products and research
– Abstraction, execution, synchronization

– Shaders, task systems, conventional threads, 
graphics pipeline, “GPU” compute languages

• Discussion of strengths/weaknesses between 
the models
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Hardware Resources (from Kayvon’s Talk)

• Core

• Execution Context

• SIMD functional units

• On-chip memory
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Abstraction

• Abstraction enables portability and system optimization
– E.g., dynamic load balancing, producer-consumer, SIMD utilization

• Lack of abstraction enables arch-specific user optimization
– E.g., multiple execution contexts jointly building on-chip data structure

• When a parallel programming model abstracts a HW 
resource, code written in that programming model scales 
across architectures with varying amounts of that resource
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Execution

• Task
– A logically related set of instructions executed in a single execution context

(aka shader, instance of a kernel, task)

• Concurrent execution
– Multiple tasks that may execute simultaneously

(because they are logically independent)

• Parallel execution
– Multiple tasks whose execution contexts are guaranteed to be live 

simultaneously
(because you want them to be for locality, synchronization, etc)
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Synchronization

• Synchronization 

– Restricting when tasks are permitted to execute

• Granularity of permitted synchronization 

determines at which granularity system allows 

user to control scheduling
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Pixel Shaders

• Execution
– Concurrent execution of identical per-pixel tasks

– Parallelism between four pixels in a 2x2 quad

• What is abstracted?
– Cores, execution contexts, SIMD functional units, memory 

hierarchy

• What synchronization is allowed?
– Between draw calls



“Task Systems” (Cilk, TBB, ConcRT, GCD, …)

• Execution
– Concurrent execution of many (likely different) tasks

• What is abstracted?
– Cores and execution contexts

– Does not abstract: SIMD functional units or memory 
hierarchy

• Where is synchronization allowed?
– Between tasks
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Conventional Thread Parallelism (pthreads)

• Execution
– Parallel execution of N tasks with N execution contexts

• What is abstracted?
– Nothing (ignoring preemption)

• Where is synchronization allowed?
– Between any execution context at various granularities
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DirectX/OpenGL Rendering Pipeline

• Execution
– Data-parallel concurrent execution of identical task within each 

shading stage

– Task-parallel concurrent execution of different shading stages

– No parallelism exposed to user

• What is abstracted?
– Cores, execution contexts, SIMD functional units, memory hierarchy, 

and fixed-function graphics units (tessellator, rasterizer, ROPs, etc)

• Where is synchronization allowed?
– Between draw calls
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GPU Compute Languages

• DX11 DirectCompute

• OpenCL

• CUDA

• There are multiple possible usage models. We’ll 

start with the “text book” hierarchical data-

parallel usage model
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Terminology Decoder Ring

Direct 
Compute

CUDA OpenCL Pthreads+SSE This talk

thread thread work-item SIMD lane work-item

- warp - thread
execution 
context

threadgroup threadblock Work-group - work-group

-
streaming 

multiprocessor
compute unit core core

- grid N-D range -
Set of work-

groups



GPU Compute Languages

• Execution
– Hierarchical model

– Lower level is parallel execution of identical tasks (work-items) within work-group

– Upper level is concurrent execution of identical work-groups

• What is abstracted?
– Work-group abstracts a core’s execution contexts, SIMD functional units

– Set of work-groups abstracts cores

– Does not abstract core-local memory

• Where is synchronization allowed?
– Between work-items in a work-group

– Between “passes” (set of work-groups)
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GPU Compute Models
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User Responsibilities: GPU Compute

• User manually maps work-item index to problem 

domain

• User controls size and number of work-groups 

– Selecting these parameters is complex combination 

of architecture- and task-specific considerations
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When Use GPU Compute vs Pixel Shader?

• Use GPU compute language if your algorithm 
needs on-chip memory
– Reduce bandwidth by building local data structures

• Otherwise, use pixel shader
– All mapping, decomposition, and scheduling 

decisions automatic

– (Easier to reach peak performance)
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Conventional Thread Parallelism on GPUs

• Also called “persistent threads”

• “Expert” usage model for GPU compute

– Defeat abstractions over cores, execution contexts, 

and SIMD functional units

– Defeat system scheduler, load balancing, etc.

– Code not portable between architectures
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• Execution

– Two-level parallel execution model

– Lower level: parallel execution of M identical tasks on M-wide SIMD functional unit

– Higher level: parallel execution of N different tasks on N execution contexts

• What is abstracted?

– Nothing (other than automatic mapping to SIMD lanes)

• Where is synchronization allowed?

– Lower-level: between any task running on same SIMD functional unit

– Higher-level: between any execution context
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Why Persistent Threads?

• Enable alternate programming models that require 
different scheduling and synchronization rules than 
the default model provides

• Example alternate programming models
– Task systems (esp. nested task parallelism)

– Producer-consumer rendering pipelines

– (See references at end of this slide deck for more details)
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Summary of Concepts

• Abstraction 
– When a parallel programming model abstracts a HW resource, 

code written in that programming model scales across 
architectures with varying amounts of that resource

• Execution
– Concurrency versus parallelism

• Synchronization
– Where is user allowed to control scheduling?
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Conclusions

• Current real-time rendering programming uses a mix of 
data-, task-, and pipeline-parallel programming (and 
conventional threads as means to an end)

• Current GPU compute models designed for data-
parallelism but can be abused to implement all of these 
other models

• Look for uses of these different models throughout the 
rest of the course
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Questions?

Course web page and slides:

http://bps10.idav.ucdavis.edu
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