% ‘ Beyond Programmable Shading Course

\

N /// ACM SIGGRAPH 2010

Parallel Programming for Graphics

Aaron Lefohn

Advanced Rendering Technology (ART)
Intel

* Overview of parallel programming models used
In real-time graphics products and research
— Abstraction, execution, synchronization

— Shaders, task systems, conventional threads,
graphics pipeline, “GPU” compute languages

What’s In This Talk?

 Discussion of strengths/weaknesses between
the models

% , v Beyond Programmable Shading Course
= ACM SIGGRAPH 2010

p—_ &

What Goes into a Game
Frame? (2 years ago)

Computation graph for Battlefied:-Bad Company-provided by DICE

Data Parallelism

Task Parallelism

Graphics Pipelines

Input Assembly
Vertex Shading

Primitive Setup
Pipeline
Flow

Geometry Shading

Rasterization

Pixel Shading

Output Merging

— - —

Hardware Resources (from Kayvon’s Talk) é/j

Core
Execution Context
SIMD functional units

On-chip memory
o ofonlen

Shared Ctx Data

8/2/2010 Beyond Programmable Shading, SIGGRAPH 2010 8

« Abstraction enables portability and system optimization
— E.g., dynamic load balancing, producer-consumer, SIMD utilization

Abstraction

« Lack of abstraction enables arch-specific user optimization
— E.g., multiple execution contexts jointly building on-chip data structure

 When a parallel programming model abstracts a HW
resource, code written in that programming model scales
across architectures with varying amounts of that resource

Beyond Programmable Shading, SIGGRAPH 2010

Execution @

e Task

— Alogically related set of instructions executed in a single execution context
(aka shader, instance of a kernel, task)

« Concurrent execution

— Multiple tasks that may execute simultaneously
(because they are logically independent)

 Parallel execution

— Multiple tasks whose execution contexts are guaranteed to be live

simultaneously _ .
(because you want them to be for locality, synchronization, etc)

8/2/2010 Beyond Programmable Shading, SIGGRAPH 2010 10

Synchronization @

« Synchronization
— Restricting when tasks are permitted to execute

« Granularity of permitted synchronization
determines at which granularity system allows
user to control scheduling

8/2/2010 Beyond Programmable Shading, SIGGRAPH 2010 11

Pixel Shaders

« EXxecution
— Concurrent execution of identical per-pixel tasks
— Parallelism between four pixels in a 2x2 quad

« What is abstracted?

— Cores, execution contexts, SIMD functional units, memory
hierarchy

« What synchronization is allowed?
— Between draw calls

“Task Systems” (Cilk, TBB, ConcRT, GCD, ...) &,

» EXxecution
— Concurrent execution of many (likely different) tasks

« What Is abstracted?

— Cores and execution contexts

— Does not abstract: SIMD functional units or memory
hierarchy

* Where Is synchronization allowed?
— Between tasks

Beyond Programmable Shading, SIGGRAPH 2010

Conventional Thread Parallelism (pthreads)@

 Execution
— Parallel execution of N tasks with N execution contexts

* What is abstracted?
— Nothing (ignoring preemption)

* Where Is synchronization allowed?
— Between any execution context at various granularities

8/2/2010 Beyond Programmable Shading, SIGGRAPH 2010 14

DirectX/OpenGL Rendering Pipeline @

e EXxecution
— Data-parallel concurrent execution of identical task within each
shading stage
— Task-parallel concurrent execution of different shading stages
— No parallelism exposed to user

« What is abstracted?

— Cores, execution contexts, SIMD functional units, memory hierarchy,
and fixed-function graphics units (tessellator, rasterizer, ROPs, etc)

* Where is synchronization allowed?

— Between draw calls
8/2/2010 Beyond Programmable Shading, SIGGRAPH 2010 15

GPU Compute Languages

« DX11 DirectCompute
* OpenCL
« CUDA

* There are multiple possible usage models. We'll
start with the “text book” hierarchical data-
parallel usage model

8/2/2010 Beyond Programmable Shading, SIGGRAPH 2010 16

Terminology Decoder Ring

Direct
Compute

threadgroup

CUDA

thread

warp

threadblock

streaming

multiprocessor

grid

OpenCL

work-item

Work-group

compute unit

N-D range

Pthreads+SSE

SIMD lane

thread

This talk

work-item

execution
context

work-group

core

Set of work-

GPU Compute Languages @
« Execution
— Hierarchical model

— Lower level is parallel execution of identical tasks (work-items) within work-group
— Upper level is concurrent execution of identical work-groups

 What is abstracted?
— Work-group abstracts a core’s execution contexts, SIMD functional units
— Set of work-groups abstracts cores
— Does not abstract core-local memory

* Where is synchronization allowed?

— Between work-items in a work-group
— Between “passes” (set of work-groups)

8/2/2010 Beyond Programmable Shading, SIGGRAPH 2010 18

GPU Compute Models

User Responsibilities: GPU Compute @

« User manually maps work-item index to problem
domain

« User controls size and number of work-groups

— Selecting these parameters is complex combination
of architecture- and task-specific considerations

Beyond Programmable Shading, SIGGRAPH 2010

When Use GPU Compute vs Pixel Shader? @

« Use GPU compute language if your algorithm
needs on-chip memory

— Reduce bandwidth by building local data structures

* Otherwise, use pixel shader

— All mapping, decomposition, and scheduling
decisions automatic

— (Easler to reach peak performance)

Beyond Programmable Shading, SIGGRAPH 2010

Conventional Thread Parallelism on GPUs @

 Also called “persistent threads”

* "Expert” usage model for GPU compute

— Defeat abstractions over cores, execution contexts,
and SIMD functional units

— Defeat system scheduler, load balancing, etc.
— Code not portable between architectures

Beyond Programmable Shading, SIGGRAPH 2010

Conventional Thread Parallelism on GPUs @

« Execution
— Two-level parallel execution model
— Lower level: parallel execution of M identical tasks on M-wide SIMD functional unit
— Higher level: parallel execution of N different tasks on N execution contexts

 What is abstracted?
— Nothing (other than automatic mapping to SIMD lanes)

* Where is synchronization allowed?
— Lower-level: between any task running on same SIMD functional unit
— Higher-level: between any execution context

8/2/2010 Beyond Programmable Shading, SIGGRAPH 2010 23

* Enable alternate programming models that require
different scheduling and synchronization rules than
the default model provides

Why Persistent Threads?

« Example alternate programming models
— Task systems (esp. nested task parallelism)
— Producer-consumer rendering pipelines
— (See references at end of this slide deck for more details)

Beyond Programmable Shading, SIGGRAPH 2010

Summary of Concepts @

* Abstraction

— When a parallel programming model abstracts a HW resource,
code written in that programming model scales across
architectures with varying amounts of that resource

« Execution
— Concurrency versus parallelism

* Synchronization
— Where is user allowed to control scheduling?

8/2/2010 Beyond Programmable Shading, SIGGRAPH 2010 25

Conclusions 9,
« Current real-time rendering programming uses a mix of

data-, task-, and pipeline-parallel programming (and
conventional threads as means to an end)

« Current GPU compute models designed for data-
parallelism but can be abused to implement all of these
other models

* Look for uses of these different models throughout the
rest of the course

Beyond Programmable Shading, SIGGRAPH 2010

Acknowledgements

* Tim Foley, Intel

« Kayvon Fatahalian, Stanford

* Mike Houston, AMD

« Tim Mattson and Andrew Lauritzen, Intel
Craig Kolb and Matt Pharr

8/2/2010 Beyond Programmable Shading, SIGGRAPH 2010 27

References

@

. GPU-inspired compute languages
- : (CPU+GPU*+...),

. Task systems (CPU and CPU+GPU+...)

: 5] , , (limited in 1.0)
. Conventional CPU thread programming
. GPU task systems and “persistent threads” (i.e., conventional thread programming on GPU)
— Ailaetal, “ ,” High Performance Graphics 2009
— Tzengetal, ,” High Performance Graphics 2010
— Parkeretal, “ . SIGGRAPH 2010
. Additional input (concepts, terminology, patterns, etc)
— Foley, “Parallel Programming for Graphics,”
— Fatahalian, “ ,” Beyond Programmable Shading SIGGRAPH 2009-2010
— Keutzeretal, “ , “ ParaPLoP 2010

8/2/2010 Beyond Programmable Shading, SIGGRAPH 2010 28

http://en.wikipedia.org/wiki/DirectCompute
http://en.wikipedia.org/wiki/DirectCompute
http://www.khronos.org/opencl/
http://www.nvidia.com/object/what_is_cuda_new.html
http://software.intel.com/en-us/articles/intel-cilk/
http://www.threadingbuildingblocks.org/
http://developer.apple.com/mac/library/documentation/Performance/Reference/GCD_libdispatch_Ref/Reference/reference.html
http://msdn.microsoft.com/en-us/library/dd504870.aspx
http://msdn.microsoft.com/en-us/library/dd460717.aspx
http://www.khronos.org/opencl/
http://en.wikipedia.org/wiki/POSIX_Threads
http://www.tml.tkk.fi/~timo/
http://idav.ucdavis.edu/publications/print_pub?pub_id=1036
http://idav.ucdavis.edu/publications/print_pub?pub_id=1036
http://idav.ucdavis.edu/publications/print_pub?pub_id=1036
http://graphics.cs.williams.edu/papers/OptiXSIGGRAPH10/
http://s09.idav.ucdavis.edu/talks/03_tfoley_ProgrammingModels.pdf
https://graphics.stanford.edu/wikis/cs448s-10/FrontPage?action=AttachFile&do=get&target=tfoley-Programming+Models.pdf
http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf
http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf
http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf
http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf
http://www.upcrc.illinois.edu/workshops/paraplop10/papers/paraplop10_submission_17.pdf

73
Questions?

Course web page and slides:
http://bpsl0.idav.ucdavis.edu

Beyond Programmable Shading Course, ACM SIGGRAPH 2010

