
Beyond Programmable Shading Course
ACM SIGGRAPH 2010

Parallel Programming for Graphics

Aaron Lefohn

Advanced Rendering Technology (ART)

Intel



What’s In This Talk?

• Overview of parallel programming models used 
in real-time graphics products and research
– Abstraction, execution, synchronization

– Shaders, task systems, conventional threads, 
graphics pipeline, “GPU” compute languages

• Discussion of strengths/weaknesses between 
the models



Beyond Programmable Shading Course
ACM SIGGRAPH 2010

What Goes into a Game 
Frame? (2 years ago)



This.

Computation graph for Battlefied: Bad Company provided by DICE



Data Parallelism



Task Parallelism



Graphics Pipelines

Pipeline

Flow

Input Assembly

Vertex Shading 

Primitive Setup

Geometry Shading 

Rasterization

Pixel Shading 

Output Merging



Hardware Resources (from Kayvon’s Talk)

• Core

• Execution Context

• SIMD functional units

• On-chip memory

Beyond Programmable Shading, SIGGRAPH 2010 88/2/2010



Abstraction

• Abstraction enables portability and system optimization
– E.g., dynamic load balancing, producer-consumer, SIMD utilization

• Lack of abstraction enables arch-specific user optimization
– E.g., multiple execution contexts jointly building on-chip data structure

• When a parallel programming model abstracts a HW 
resource, code written in that programming model scales 
across architectures with varying amounts of that resource

Beyond Programmable Shading, SIGGRAPH 2010 98/2/2010



Execution

• Task
– A logically related set of instructions executed in a single execution context

(aka shader, instance of a kernel, task)

• Concurrent execution
– Multiple tasks that may execute simultaneously

(because they are logically independent)

• Parallel execution
– Multiple tasks whose execution contexts are guaranteed to be live 

simultaneously
(because you want them to be for locality, synchronization, etc)

Beyond Programmable Shading, SIGGRAPH 2010 108/2/2010



Synchronization

• Synchronization 

– Restricting when tasks are permitted to execute

• Granularity of permitted synchronization 

determines at which granularity system allows 

user to control scheduling

Beyond Programmable Shading, SIGGRAPH 2010 118/2/2010



Pixel Shaders

• Execution
– Concurrent execution of identical per-pixel tasks

– Parallelism between four pixels in a 2x2 quad

• What is abstracted?
– Cores, execution contexts, SIMD functional units, memory 

hierarchy

• What synchronization is allowed?
– Between draw calls



“Task Systems” (Cilk, TBB, ConcRT, GCD, …)

• Execution
– Concurrent execution of many (likely different) tasks

• What is abstracted?
– Cores and execution contexts

– Does not abstract: SIMD functional units or memory 
hierarchy

• Where is synchronization allowed?
– Between tasks

Beyond Programmable Shading, SIGGRAPH 2010 138/2/2010



Conventional Thread Parallelism (pthreads)

• Execution
– Parallel execution of N tasks with N execution contexts

• What is abstracted?
– Nothing (ignoring preemption)

• Where is synchronization allowed?
– Between any execution context at various granularities

Beyond Programmable Shading, SIGGRAPH 2010 148/2/2010



DirectX/OpenGL Rendering Pipeline

• Execution
– Data-parallel concurrent execution of identical task within each 

shading stage

– Task-parallel concurrent execution of different shading stages

– No parallelism exposed to user

• What is abstracted?
– Cores, execution contexts, SIMD functional units, memory hierarchy, 

and fixed-function graphics units (tessellator, rasterizer, ROPs, etc)

• Where is synchronization allowed?
– Between draw calls

Beyond Programmable Shading, SIGGRAPH 2010 158/2/2010



GPU Compute Languages

• DX11 DirectCompute

• OpenCL

• CUDA

• There are multiple possible usage models. We’ll 

start with the “text book” hierarchical data-

parallel usage model

Beyond Programmable Shading, SIGGRAPH 2010 168/2/2010



Terminology Decoder Ring

Direct 
Compute

CUDA OpenCL Pthreads+SSE This talk

thread thread work-item SIMD lane work-item

- warp - thread
execution 
context

threadgroup threadblock Work-group - work-group

-
streaming 

multiprocessor
compute unit core core

- grid N-D range -
Set of work-

groups



GPU Compute Languages

• Execution
– Hierarchical model

– Lower level is parallel execution of identical tasks (work-items) within work-group

– Upper level is concurrent execution of identical work-groups

• What is abstracted?
– Work-group abstracts a core’s execution contexts, SIMD functional units

– Set of work-groups abstracts cores

– Does not abstract core-local memory

• Where is synchronization allowed?
– Between work-items in a work-group

– Between “passes” (set of work-groups)

Beyond Programmable Shading, SIGGRAPH 2010 188/2/2010



GPU Compute Models

Beyond Programmable Shading SIGGRAPH 201019

…barrier barrier

Work-group Work-group



User Responsibilities: GPU Compute

• User manually maps work-item index to problem 

domain

• User controls size and number of work-groups 

– Selecting these parameters is complex combination 

of architecture- and task-specific considerations

Beyond Programmable Shading, SIGGRAPH 2010 208/2/2010



When Use GPU Compute vs Pixel Shader?

• Use GPU compute language if your algorithm 
needs on-chip memory
– Reduce bandwidth by building local data structures

• Otherwise, use pixel shader
– All mapping, decomposition, and scheduling 

decisions automatic

– (Easier to reach peak performance)

Beyond Programmable Shading, SIGGRAPH 2010 218/2/2010



Conventional Thread Parallelism on GPUs

• Also called “persistent threads”

• “Expert” usage model for GPU compute

– Defeat abstractions over cores, execution contexts, 

and SIMD functional units

– Defeat system scheduler, load balancing, etc.

– Code not portable between architectures

Beyond Programmable Shading, SIGGRAPH 2010 228/2/2010



• Execution

– Two-level parallel execution model

– Lower level: parallel execution of M identical tasks on M-wide SIMD functional unit

– Higher level: parallel execution of N different tasks on N execution contexts

• What is abstracted?

– Nothing (other than automatic mapping to SIMD lanes)

• Where is synchronization allowed?

– Lower-level: between any task running on same SIMD functional unit

– Higher-level: between any execution context

Beyond Programmable Shading, SIGGRAPH 2010 238/2/2010

Conventional Thread Parallelism on GPUs



Why Persistent Threads?

• Enable alternate programming models that require 
different scheduling and synchronization rules than 
the default model provides

• Example alternate programming models
– Task systems (esp. nested task parallelism)

– Producer-consumer rendering pipelines

– (See references at end of this slide deck for more details)

Beyond Programmable Shading, SIGGRAPH 2010 248/2/2010



Summary of Concepts

• Abstraction 
– When a parallel programming model abstracts a HW resource, 

code written in that programming model scales across 
architectures with varying amounts of that resource

• Execution
– Concurrency versus parallelism

• Synchronization
– Where is user allowed to control scheduling?

Beyond Programmable Shading, SIGGRAPH 2010 258/2/2010



Conclusions

• Current real-time rendering programming uses a mix of 
data-, task-, and pipeline-parallel programming (and 
conventional threads as means to an end)

• Current GPU compute models designed for data-
parallelism but can be abused to implement all of these 
other models

• Look for uses of these different models throughout the 
rest of the course

Beyond Programmable Shading, SIGGRAPH 2010 268/2/2010



Acknowledgements

• Tim Foley, Intel

• Kayvon Fatahalian, Stanford

• Mike Houston, AMD

• Tim Mattson and Andrew Lauritzen, Intel

• Craig Kolb and Matt Pharr

Beyond Programmable Shading, SIGGRAPH 2010 278/2/2010



References

• GPU-inspired compute languages
– DX11 DirectCompute, OpenCL (CPU+GPU+…), CUDA 

• Task systems (CPU and CPU+GPU+…)
– Cilk, Thread Building Blocks (TBB), Grand Central Dispatch (GCD), ConcRT, Task Parallel Library, OpenCL (limited in 1.0)

• Conventional CPU thread programming
– Pthreads

• GPU task systems and “persistent threads” (i.e., conventional thread programming on GPU)
– Aila et al, “Understanding the Efficiency of Ray Traversal on GPUs,” High Performance Graphics 2009

– Tzeng et al, “Task Management for Irregular-Parallel Workloads on the GPU,” High Performance Graphics 2010

– Parker et al, “OptiX: A General Purpose Ray Tracing Engine,” SIGGRAPH 2010

• Additional input (concepts, terminology, patterns, etc)
– Foley, “Parallel Programming for Graphics,”

• Beyond Programmable Shading SIGGRAPH 2009

• Beyond Programmable Shading CS448s Stanford course

– Fatahalian, “Running Code at a Teraflop: How a GPU Shader Core Works,” Beyond Programmable Shading SIGGRAPH 2009-2010

– Keutzer et al, “A Design Pattern Language for Engineering (Parallel) Software: Merging the PLPP and OPL projects, “ ParaPLoP 2010

Beyond Programmable Shading, SIGGRAPH 2010 288/2/2010

http://en.wikipedia.org/wiki/DirectCompute
http://en.wikipedia.org/wiki/DirectCompute
http://www.khronos.org/opencl/
http://www.nvidia.com/object/what_is_cuda_new.html
http://software.intel.com/en-us/articles/intel-cilk/
http://www.threadingbuildingblocks.org/
http://developer.apple.com/mac/library/documentation/Performance/Reference/GCD_libdispatch_Ref/Reference/reference.html
http://msdn.microsoft.com/en-us/library/dd504870.aspx
http://msdn.microsoft.com/en-us/library/dd460717.aspx
http://www.khronos.org/opencl/
http://en.wikipedia.org/wiki/POSIX_Threads
http://www.tml.tkk.fi/~timo/
http://idav.ucdavis.edu/publications/print_pub?pub_id=1036
http://idav.ucdavis.edu/publications/print_pub?pub_id=1036
http://idav.ucdavis.edu/publications/print_pub?pub_id=1036
http://graphics.cs.williams.edu/papers/OptiXSIGGRAPH10/
http://s09.idav.ucdavis.edu/talks/03_tfoley_ProgrammingModels.pdf
https://graphics.stanford.edu/wikis/cs448s-10/FrontPage?action=AttachFile&do=get&target=tfoley-Programming+Models.pdf
http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf
http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf
http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf
http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf
http://www.upcrc.illinois.edu/workshops/paraplop10/papers/paraplop10_submission_17.pdf


Questions?

Course web page and slides:

http://bps10.idav.ucdavis.edu
Beyond Programmable Shading Course, ACM SIGGRAPH 2010 298/2/2010


